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The process of gene regulation

Transcriptional regulation: Proteins called
transcription factors bind to specific sequences of the
DNA to help or hinder the transcription of individual

genes
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The Result:
A complex web of interactions

Figure taken from http://rsif.royalsocietypublishing.org/content/5/Suppl__1/S85.full




Building a simple model for
gene regulation:Why Boolean?
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Input/output regulatory relationships between genes are
observed to be strongly sigmoidal and well approximated
by step functions.




Boolean network models

@ Originally developed by Kauffman (1969) to model genetic regulatory
networks.

@ Protein and RNA concentrations in networks are often modeled using
system of differential equations. But

» the number of parameters can be huge.
» Boolean networks sometimes outperform the diff. eq. models.

@ Random boolean networks have been recently used to model

» yeast transcriptional network,
» yeast cell-cycle network.
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Local update rules: An example
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Describing the Boolean Network

® Network topology:

B {1 if link fromj — 1

v 0 otherwise

e Update functions:
»  Output rows randomly filled in

» Bias - probability of a 0 appearing in the
output row




Properties of the Boolean Model

® Finiteness: Eventually the system must
return to a previously visited state

¢ Determinism: Upon this return, the
subsequent dynamics will be the same as
for the previous visit

® Attractors: Every initial condition
produces a trajectory that eventually goes
to a periodic orbit, called the “attractor” of
that initial condition, and different initial
conditions can go to different periodic
orbit attractors.




Significance of the attractors

® The attractors may represent a
specific pattern of protein ES Cells
expression that define a cell’s '
character

® In single celled organisms this
could be different cell states: )
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Pancreatic cells Bone Neurons

® In multicellular organisms these
could correspond to different
cell types.




Our random boolean network

e nnodes, V, ={1,2,...,n}.

@ Each node x has r distinct input nodes y;i(x), y2(x), ..., y-(x) chosen
randomly from V), \ {x}.

o Consider the directed graph G, = (V) Ej,), where the edge set

En={(yi(x),x) :x € Vp, 1 <i<r}.

Construction:
@ Allocate r oriented half-edges to each node pointing to it.

@ Pair the half-edges and the nodes uniformly at random.
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Picture of the Construction
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Cell Size

These are cartoons of regulatory networks

Cdc20&Cdc14
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Dynamics

Discrete time system, n:(x) € {0,1}, t =0,1,....

e Each site x has a random function ¢y : {0,1}" — {0,1} where the
values are independent and each equals 0 with probability p.
@ The updates are

Ne+1(x) = Px(e(y1(x)), - - me(yr(x)))-

Simulation Studies: Derrida and Pomeau (1986)

@ Phase transition curve is r - 2p(1 — p) = 1.

@ Below the curve ‘ordered’ behavior — rapid convergence to a fixed point

@ Above the curve ‘chaotic’ behavior — exponentially prolonged
persistence of changes.
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Simplified Problem

Consider another process (¢(x) for t > 1. (¢(x) =1 if ne(x) # ne—1(x).
Approximate dynamics: A threshold contact process in which (¢11(x) =1

with probability g = 2p(1 — p) if

max Ge(yi(x)) =1

and (¢4+1(x) = 0 otherwise.

Reason: If the status of at least one of the inputs has changed, then the
new value will be different from the old with probability g = 2p(1 — p).

Conjecture. If r > 3, prolonged persistence if gr > 1.

Chaos is bad news for a gene regulatory network. Stuart Kauffman argues
that they evolve to the edge of chaos.
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Intuition behind the conjecture

Let & be the set valued process & = {x : (¢(x) = 1}.

@ Let the dual graph Gn = (Vh, E,,) where E, is obtained from E, by
reversing arrows.

o Look at the time-dual process &; on G,, where
» x € & implies

Plyi(x) € &enaVil = g =1 Plyi(x) & &, Vil-
> Duality: P(6ANB #0)=P(EENAH#D).
» Prolonged persistence of the two process are equivalent.

@ The dual Xi; is like a branching process on Gp.
» Within short distances (< (1/4) the diameter) of a vertex G, is

essentially a directed r—tree.
» Positive probability of survival when mean offspring number gr > 1.
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Prolonged persistence when g > 1/(r — 1)
Recall g = 2p(1 — p).
Let p be the survival probability for the branching process with offspring
distribution gé, + (1 — q)do.
Theorem. (C. and Durrett (2010) /f g(r — 1) > 1, then the threshold
contact process on G, persists for time O(e?") with high probability. The
fraction of 1's in the quasi-stationary density > p — & for any 6 > 0 with
high probability.
Sketch of the proof: Consider G,.
o Let A* ={y : x — y for some x € A} in Gn. This is not the boundary
since we may have y € A.
o Isoperimetric inequality: If € is small, then with high prob,
|A*| > (r — 1 —¢€)|A| for all A with |A| < ne.
o If g(r —1) > 1 and € is small, then whenever || < ne,
with probability > 1 —e™7".

A ’

Remarks: r — 1 is sharp.
If g(r — 1) < 1 there are exponentially many bad small sets. If & is bad,

then iiii < ii with high probability.
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Prolonged persistence when g > 1/r

Theorem. Same conclusion holds
We proved a weaker bound for persistence time, which has recently been
improved by Mountford and Valesin (arxiv).

Sketch of the proof:

@ One needs to look at more than one generation.

@ For suitable choices of e >0 and g > 1, if \ft] < en for some t > 0,
then |{;4¢| > en with probability > 1 — e™".

@ The above estimate gives exponential persistence.

@ The argument for density of 1's in the quasi-stationary density is the
same.

Work in progress : What happens i we consider more complex networks
etc.
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Thank you

= = = E DA
S. Chatterjee (NYU) Random Boolean Networks





