Persistence of activity in random Boolean networks

Shirshendu Chatterjee

Courant Institute, NYU Joint work with **Rick Durrett** October 2012

The process of gene regulation

Transcriptional regulation: Proteins called transcription factors bind to specific sequences of the DNA to help or hinder the transcription of individual genes

The Result: A complex web of interactions

Figure taken from http://rsif.royalsocietypublishing.org/content/5/Suppl_1/S85.full

Building a simple model for gene regulation: Why Boolean?

Input/output regulatory relationships between genes are observed to be strongly sigmoidal and well approximated by step functions.

Boolean network models

- Originally developed by Kauffman (1969) to model genetic regulatory networks.
- Protein and RNA concentrations in networks are often modeled using system of differential equations. But
 - the number of parameters can be huge.
 - Boolean networks sometimes outperform the diff. eq. models.
- Random boolean networks have been recently used to model
 - yeast transcriptional network,
 - yeast cell-cycle network.

Local update rules: An example

current state time t		State of gene 3
Gene I	Gene 2	at t+l
0	0	0
0	Ι	0
I	0	Ι
		0

Г

Node with 2 inputs

Describing the Boolean Network

• Network topology:

$$A_{ij} = \begin{cases} 1 \text{ if link from } j \to i \\ 0 \text{ otherwise} \end{cases}$$

- Update functions:
 - Output rows randomly filled in
 - Bias probability of a 0 appearing in the output row

Properties of the Boolean Model

- Finiteness: Eventually the system must return to a previously visited state
- **Determinism:** Upon this return, the subsequent dynamics will be the same as for the previous visit
- Attractors: Every initial condition produces a trajectory that eventually goes to a periodic orbit, called the "attractor" of that initial condition, and different initial conditions can go to different periodic orbit attractors.

Significance of the attractors

- The attractors may represent a specific pattern of protein expression that define a cell's character
- In single celled organisms this could be different cell states: growing, dividing, starving, etc.
- In multicellular organisms these could correspond to different cell types.

Our random boolean network

• *n* nodes,
$$V_n = \{1, 2, ..., n\}$$
.

- Each node x has r distinct input nodes y₁(x), y₂(x),..., y_r(x) chosen randomly from V_n \ {x}.
- Consider the directed graph $G_n = (V_n, E_n)$, where the edge set

$$E_n = \{(y_i(x), x) : x \in V_n, 1 \le i \le r\}.$$

Construction:

- Allocate r oriented half-edges to each node pointing to it.
- Pair the half-edges and the nodes uniformly at random.

Picture of the Construction

э

< □ > < □ > < □ > < □ > < □ > < □ >

These are cartoons of regulatory networks

Dynamics

Discrete time system, $\eta_t(x) \in \{0,1\}$, $t = 0, 1, \dots$

- Each site x has a random function φ_x : {0,1}^r → {0,1} where the values are independent and each equals 0 with probability p.
- The updates are

$$\eta_{t+1}(x) = \phi_x(\eta_t(y_1(x)), \ldots, \eta_t(y_r(x))).$$

Simulation Studies: Derrida and Pomeau (1986)

- Phase transition curve is $r \cdot 2p(1-p) = 1$.
- Below the curve 'ordered' behavior rapid convergence to a fixed point
- Above the curve 'chaotic' behavior exponentially prolonged persistence of changes.

イロト 不得下 イヨト イヨト 二日

Simplified Problem

Consider another process $\zeta_t(x)$ for $t \ge 1$. $\zeta_t(x) = 1$ if $\eta_t(x) \ne \eta_{t-1}(x)$.

Approximate dynamics: A threshold contact process in which $\zeta_{t+1}(x) = 1$ with probability q = 2p(1-p) if

 $\max_{1\leq i\leq r}\zeta_t(y_i(x))=1$

and $\zeta_{t+1}(x) = 0$ otherwise.

Reason: If the status of at least one of the inputs has changed, then the new value will be different from the old with probability q = 2p(1-p).

Conjecture. If $r \ge 3$, prolonged persistence if qr > 1.

Chaos is bad news for a gene regulatory network. Stuart Kauffman argues that they evolve to the edge of chaos.

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

Intuition behind the conjecture

Let ξ_t be the set valued process $\xi_t = \{x : \zeta_t(x) = 1\}.$

- Let the dual graph $\hat{G}_n = (V_n, \hat{E}_n)$, where \hat{E}_n is obtained from E_n by reversing arrows.
- Look at the time-dual process $\hat{\xi}_t$ on \hat{G}_n , where

• $x \in \hat{\xi}_t$ implies

$$P[y_i(x) \in \hat{\xi}_{t+1} \forall i] = q = 1 - P[y_i(x) \notin \hat{\xi}_{t+1}^c \forall i].$$

- Duality: $P(\xi_t^A \cap B \neq \emptyset) = P(\hat{\xi}_t^B \cap A \neq \emptyset).$
- Prolonged persistence of the two process are equivalent.
- The dual $\hat{x}i_t$ is like a branching process on \hat{G}_n .
 - Within short distances (< (1/4) the diameter) of a vertex \hat{G}_n is essentially a directed r-tree.
 - Positive probability of survival when mean offspring number qr > 1.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Prolonged persistence when q > 1/(r-1)

Recall q = 2p(1-p).

Let ρ be the survival probability for the branching process with offspring distribution $q\delta_r + (1-q)\delta_0$.

Theorem. (C. and Durrett (2010) If q(r-1) > 1, then the threshold contact process on G_n persists for time $O(e^{\gamma n})$ with high probability. The fraction of 1's in the quasi-stationary density $\geq \rho - \delta$ for any $\delta > 0$ with high probability.

Sketch of the proof: Consider \hat{G}_n .

- Let A^{*} = {y : x → y for some x ∈ A} in Ĝ_n. This is not the boundary since we may have y ∈ A.
- Isoperimetric inequality: If ϵ is small, then with high prob,
 - $|A^*| \ge (r-1-\epsilon)|A|$ for all A with $|A| \le n\epsilon$.
- If q(r-1) > 1 and ϵ is small, then whenever $|\hat{\xi}_t| \le n\epsilon$, $|\hat{\xi}_{t+1}| > |\hat{\xi}_t|$ with probability $\ge 1 e^{-\gamma n}$.

Remarks: r-1 is sharp. If q(r-1) < 1 there are exponentially many bad small sets. If $\hat{\xi}_t$ is bad, then $|\hat{\xi}_{t+1}| < |\hat{\xi}_t|$ with high probability.

Prolonged persistence when q > 1/r

Theorem. Same conclusion holds

We proved a weaker bound for persistence time, which has recently been improved by Mountford and Valesin (arxiv).

Sketch of the proof:

- One needs to look at more than one generation.
- For suitable choices of $\epsilon > 0$ and $g \ge 1$, if $|\hat{\xi}_t| \le \epsilon n$ for some t > 0, then $|\hat{\xi}_{t+g}| > \epsilon n$ with probability $\ge 1 e^{-\gamma n}$.
- The above estimate gives exponential persistence.
- The argument for density of 1's in the quasi-stationary density is the same.

Work in progress : What happens i we consider more complex networks etc.

・ロト ・ 四ト ・ ヨト ・ ヨト …

Thank you

S. Chatterjee (NYU)

Random Boolean Networks

3

イロト イポト イヨト イヨト