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The process of gene regulation

Transcriptional regulation:  Proteins called 
transcription factors bind to specific sequences of the 
DNA to help or hinder the transcription of individual 
genes

Gene j Protein j Gene i 

Link ij 



The Result: 
 A complex web of interactions

Figure taken from http://rsif.royalsocietypublishing.org/content/5/Suppl_1/S85.full 



Building a simple model for 
gene regulation: Why Boolean?
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Input/output regulatory relationships between genes are 
observed to be strongly sigmoidal and well approximated 
by step functions.



Boolean network models

Originally developed by Kau�man (1969) to model genetic regulatory

networks.

Protein and RNA concentrations in networks are often modeled using
system of di�erential equations. But

I the number of parameters can be huge.
I Boolean networks sometimes outperform the di�. eq. models.

Random boolean networks have been recently used to model
I yeast transcriptional network,
I yeast cell-cycle network.
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Local update rules:  An example
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Node with 2 inputs



Describing the Boolean Network

• Network topology:

• Update functions:

‣ Output rows randomly filled in

‣ Bias - probability of a 0 appearing in the 
output row

1 if link from 
0 otherwise           ij

j i
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Properties of the Boolean Model

• Finiteness:  Eventually the system must 
return to a previously visited state

• Determinism:  Upon this return, the 
subsequent dynamics will be the same as 
for the previous visit 

• Attractors:  Every initial condition 
produces a trajectory that eventually goes 
to a periodic orbit, called the “attractor” of 
that initial condition, and different initial 
conditions can go to different periodic 
orbit attractors.

•



Significance of the attractors

• The attractors may represent a 
specific pattern of protein 
expression that define a cell’s 
character

• In single celled organisms this 
could be different cell states: 
growing, dividing, starving, etc.

• In multicellular organisms these 
could correspond to different 
cell types.



Our random boolean network

n nodes, Vn = {1, 2, . . . , n}.
Each node x has r distinct input nodes y1(x), y2(x), . . . , yr (x) chosen
randomly from Vn \ {x}.
Consider the directed graph Gn = (Vn,En), where the edge set

En = {(yi (x), x) : x ∈ Vn, 1 ≤ i ≤ r}.

Construction:

Allocate r oriented half-edges to each node pointing to it.

Pair the half-edges and the nodes uniformly at random.
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Picture of the Construction
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These are cartoons of regulatory networks
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Dynamics

Discrete time system, ηt(x) ∈ {0, 1}, t = 0, 1, . . ..

Each site x has a random function φx : {0, 1}r → {0, 1} where the

values are independent and each equals 0 with probability p.

The updates are

ηt+1(x) = φx(ηt(y1(x)), . . . ηt(yr (x))).

Simulation Studies: Derrida and Pomeau (1986)

Phase transition curve is r · 2p(1− p) = 1.

Below the curve `ordered' behavior � rapid convergence to a �xed point

Above the curve `chaotic' behavior � exponentially prolonged

persistence of changes.
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Simpli�ed Problem

Consider another process ζt(x) for t ≥ 1. ζt(x) = 1 if ηt(x) 6= ηt−1(x).

Approximate dynamics: A threshold contact process in which ζt+1(x) = 1

with probability q = 2p(1− p) if

max
1≤i≤r

ζt(yi (x)) = 1

and ζt+1(x) = 0 otherwise.

Reason: If the status of at least one of the inputs has changed, then the

new value will be di�erent from the old with probability q = 2p(1− p).

Conjecture. If r ≥ 3, prolonged persistence if qr > 1.

Chaos is bad news for a gene regulatory network. Stuart Kau�man argues

that they evolve to the edge of chaos.
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Intuition behind the conjecture

Let ξt be the set valued process ξt = {x : ζt(x) = 1}.

Let the dual graph Ĝn = (Vn, Ên), where Ên is obtained from En by

reversing arrows.

Look at the time-dual process ξ̂t on Ĝn, where
I x ∈ ξ̂t implies

P[yi (x) ∈ ξ̂t+1∀i ] = q = 1− P[yi (x) 6∈ ξ̂ct+1
∀i ].

I Duality: P(ξAt ∩ B 6= ∅) = P(ξ̂Bt ∩ A 6= ∅).

I Prolonged persistence of the two process are equivalent.

The dual x̂ it is like a branching process on Ĝn.
I Within short distances (< (1/4) the diameter) of a vertex Ĝn is

essentially a directed r−tree.
I Positive probability of survival when mean o�spring number qr > 1.
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Prolonged persistence when q > 1/(r − 1)
Recall q = 2p(1− p).
Let ρ be the survival probability for the branching process with o�spring

distribution qδr + (1− q)δ0.
Theorem. (C. and Durrett (2010) If q(r − 1) > 1, then the threshold

contact process on Gn persists for time O(eγn) with high probability. The

fraction of 1's in the quasi-stationary density ≥ ρ− δ for any δ > 0 with

high probability.

Sketch of the proof: Consider Ĝn.

Let A∗ = {y : x → y for some x ∈ A} in Ĝn. This is not the boundary

since we may have y ∈ A.

Isoperimetric inequality: If ε is small, then with high prob,

|A∗| ≥ (r − 1− ε)|A| for all A with |A| ≤ nε.
If q(r − 1) > 1 and ε is small, then whenever |ξ̂t | ≤ nε, |ξ̂t+1| > |ξ̂t |
with probability ≥ 1− e−γn.

Remarks: r − 1 is sharp.

If q(r − 1) < 1 there are exponentially many bad small sets. If ξ̂t is bad,
then |ξ̂t+1| < |ξ̂t | with high probability.
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Prolonged persistence when q > 1/r

Theorem. Same conclusion holds

We proved a weaker bound for persistence time, which has recently been

improved by Mountford and Valesin (arxiv).

Sketch of the proof:

One needs to look at more than one generation.

For suitable choices of ε > 0 and g ≥ 1, if |ξ̂t | ≤ εn for some t > 0,

then |ξ̂t+g | > εn with probability ≥ 1− e−γn.

The above estimate gives exponential persistence.

The argument for density of 1's in the quasi-stationary density is the

same.

Work in progress : What happens i we consider more complex networks

etc.
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Thank you
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